Teaching Multiplication and Division of Fractions and Decimals

It is more efficient to teach these operations on fractions first, so that students can call on their understanding of those concepts to make sense of decimals.

Multiplication of Fractions

Beginning with multiplication of fractions:
Connection: Multiplication means "Groups of"
So $4 \times 1 / 2$ means four groups of $1 / 2$. Have students draw this and they will realize it equals 2.

Student should understand that multiplication is "commutative". That means that if we multiply two factors we can multiply them in any order and get the same product. (if kids don't know this, review it: $3 \times 4=12$ and $4 \times 3=12$. Draw pictures of 3 groups of 4 and four groups of 3 .

So the expression $4 \times 1 / 2$ from above can also be $1 / 2 \times 4$ In this case, we say "One half of a group of four" or, more simply, "one half of four". Most kids know that half of four is two (same answer as above).
Big Connection: Multiplication means groups of.
When reading mathematical expressions with fractions, decimals, and percents, we often take the " X " multiplication symbol to mean "of".

One third of 12 is three.
$1 / 3 \times 12=3$

Now, draw students' attention to the fact that when we multiply by fractions (smaller than one, such as $1 / 2$ or $1 / 3$ like our examples above), our product is smaller. This is important.
Above, when we multiplied 4 by $1 / 2$ our answer is smaller than 4.
Up until this point, students have seen whole number multiplication, so they are used to multiplication making numbers bigger.
$4 \times 5=20,6 \times 8=48$ and so on.

There are some fun ways to do this, like using a "commit and toss", or "vote with your feet" activity.
Pose the statement: "When I multiply two numbers, my product is always bigger or equal to my factors". Up until now, this has been true for kids. Some might conjecture about multiplication by zero or one. You can do this activity before the lesson, and redo it the next day to see if anyone changes their mind.

Ask students, "What is half of one quarter". Some will guess one eighth.
$1 / 2 \times 1 / 4=\frac{1}{8}$
Have them draw it.

When representing fractions, help kids note that the "whole" can change. Here I have a rectangular whole and also a circular model. We also need to point out we sometimes draw fractions of a whole, and sometimes fractions of a set.

Kids should know that $1 / 8$ is smaller than $1 / 2$ and smaller than $1 / 4$ So big idea: If I multiply fractions, I actually make the product smaller. You may have to qualify that this is true for fractions < 1 (fractions smaller than one whole) because $\frac{10}{3}$ is a fraction, but multiplying by this will make your product greater, of course.

Here we can teach multiplying fractions symbolically

$$
\frac{2}{3} \times \frac{4}{5}=\frac{2 \times 4}{3 \times 5}=\frac{8}{15}
$$

Soon students will Skip this step.

Practice mental math strategies in a number talk:

$$
\begin{aligned}
& \text { what is } \\
& \frac{1}{3} \text { of } 12 \text { ? } \quad \frac{1}{3} \times 12= \\
& \frac{1}{4} \text { of } 20 \text { ? } \quad \frac{1}{4} \times 20= \\
& \frac{1}{2} \text { of } 10 ? \quad \frac{1}{2} \times 10= \\
& \text { kids will know } \\
& \text { answers by logic. } \\
& \text { * * B14 } \\
& \text { CONNECTION: } \\
& \text { Did they notice } \\
& \text { that taking a } \\
& \text { third of something } \\
& \text { is justdividungly } 3 \text { ? } \\
& \text { Did they notice takenig } \\
& \frac{1}{4} \text { of sometheny is } \\
& \text { just dividend 4? } \\
& \frac{1}{2} \times 10=\frac{1}{2} \times \frac{10}{1}=\frac{10}{2}=10 \div 2=5
\end{aligned}
$$

If I were writing this on The board I wowed put
one step below the other. "onehalf of ten is 5 "

Now, go back to this:
what is

$$
\begin{aligned}
& \frac{1}{3} \text { of } 12 ? \\
& \frac{1}{4} \text { of } 20 ? \\
& \frac{1}{2} \text { of } 10 ?
\end{aligned}
$$

Faction
mealy al jay of

$$
\begin{aligned}
& \text { ar ting jingo } \\
& \text { and the }
\end{aligned}
$$

Look how easy it is to multiply by fractions!
Now lets use the symbolic algorithm

$$
\frac{2}{3} \times 12
$$

$$
\begin{aligned}
& \frac{2}{3} \times \frac{12}{1}=\frac{24}{3} \\
& \frac{24}{3}=8 \quad \frac{2}{3} \times 12=8
\end{aligned}
$$

Here we are using fractions of a set

Be sure to give kids a representation to make sense of this. Draw a set of 12, circle thirds. Find two of those thirds, so that's eight.

Multiplying 12 by $2 / 3$ mentally is dividing 12 by 3 , then doubling it.
When we do the algorithm, we are doubling first, then dividing by three. Same thing!

$$
\begin{aligned}
& \frac{2}{3} \times 12 \quad \frac{2}{3} \times \frac{12}{1}=\frac{24}{3} \text { doubling } 12 \\
& \frac{24}{3}=8 \quad \frac{2}{3} \times 12=8 \\
& \text { Then dividing by } 3 .
\end{aligned}
$$

$\frac{1}{2} \times \frac{1}{3}$ (half of a third)
5 Halfof a third is one sixth of the whole

$$
\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}
$$

Here we are using fractions of a whole

Once we've had some practice, lets make sure we get kids to "cross cancel". Cross out common factors before we multiply. **This is not cross multiplying-some students will want to call it that. It is NOT.

1 Another model.

$$
\begin{aligned}
& \frac{2}{3} \times 12 \frac{2}{13} \times \frac{12^{4}}{1}=\frac{8}{1}: \frac{2}{3} \times \frac{12}{1}=\frac{2 \times 12}{3} \\
&=8: \frac{2 \times 2 \times 2 \times 3}{3} \\
&=\frac{2 \times 2 \times 2}{1}=8
\end{aligned}
$$

Kids should practice cross canceling. There are few to no examples of this in the text
Ex:
$74 \frac{15}{8} \times \frac{24}{40} \times \frac{2}{3}=\frac{3}{4} \begin{gathered}\text { we cross out any } \\ \text { com on factors } \\ \text { between any }\end{gathered}$ between any numerator + Another model. $\overbrace{\text { is }}^{24}$ any denominator:

$$
\frac{15}{8} \times \frac{24}{40} \times \frac{2}{3}=\underbrace{\frac{\overbrace{8}^{3 \times 8}}{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 2 \times 2 \times 2 \times 8} \times \underbrace{2 \times 2 \times 8}_{40}}_{\text {Another model. }}=\frac{3}{2 \times 2}=\frac{3}{4}
$$

This method uses prumifactors. Good to illustrate once or twice, but @hove method is how we wooed show our work.

Fraction Division

First: It is important to note that there are two kinds of division:
Partitive Division: Means equal sharing, or splitting a group of items into a known number of smaller groups
For example: 4 students share a box of 20 pencil crayons

Quotative division Is when we know the number of objects in each group, and we want to know how many groups we can make:
Ex: We have 20 pencil crayons in a box. Each student needs 5 . How many students can share one box? This is lite ask ny "How many groups of 5 are

$$
\begin{aligned}
& I^{2 \text { can } 4} \\
& \text { make }{ }^{2} \text { groups. } \\
& 20 \div 5=4
\end{aligned}
$$

* it is easiest to think of fraction division

So: $8 \div \frac{1}{2}=$ is asking: "How many groups of half are in 8 ?"

You may want to start with $8 \div 4=$
How many groups of 4 are in 8 ? Kids will know it's two. Draw it for them:

$$
\begin{gathered}
2 \text { groups of } 4 \\
8 \div 4=2
\end{gathered}
$$

Now $8 \div 2=$
"How many groups of 2 are in 8 ?"

$$
\begin{gathered}
4 \text { groups ot } 2 \text { are in } 8 \\
8: 2=4
\end{gathered}
$$

So it follows: $8 \div \frac{1}{2}=$ "How many groups of one half are in $8 ?$ "

for each of my 8 squares
Here's two halves there are two halves
There are 16 halve r $8=16$
HEY:
(That is whyuthen we I divide by a fraction, we mut ply by the

Do not teach students to just "multiply by the reciprocal" or "invert and multiply" before explaining why.

Fraction divided by a fraction:
Ex: $\frac{1}{2} \div \frac{1}{6}=$ is asking "how many sixths are in one half"?

You can clearly see in this model, there are three sixths in one half. $\frac{1}{2} \div \frac{1}{6}=3$

There are six sixths in the whole, and we are taking half of them.
$\frac{1}{2} \times 6$

Oh. Multiply by reciprocal.

Do not teach students to just
"multiply by the reciprocal" or
"invert and multiply" before explaining why.

An example with a remainder: (Note that this is a more advanced model)
$1 \frac{1}{2} \div \frac{2}{3}=$
This is asking "how many "two thirds" are in "one and a half"?

Here is one and a half, or three halves (review mixed and improper fractions

If I partition everything into sixths, I can visualize both halves and thirds (this is why we need common denominators!)

FOUR sixths

How many group s of $\frac{-1}{6}\left(\right.$ or $\left.\frac{2}{3}\right)$ are in $1 \frac{1}{2}$?
Herewe have 2, with i piece left over.
This one piece is
$\frac{1}{4}$ of the "two-thirds" piece

This little left tower piece is $\frac{1}{4}$ of the yellow piece
So ourguotient is $2 \frac{1}{4}$.
There are two and one quarter of these Din this D

Now symbolically: $1 \frac{1}{2} \div \frac{2}{3}=$

$$
\begin{aligned}
\frac{3}{2} \div \frac{2}{3}= & \frac{3}{2} \times \frac{3}{2} \\
= & \frac{9}{4} \\
= & 2 \frac{1}{4}
\end{aligned}
$$

There are a lot of fundamental connections to make here!
Again, kids are used to division making a number smaller (we would say the quotient is smaller than the dividend)
$40 \div 8=5 \quad$ and $\quad 20 \div 10=2$
Dividend
Quotient

But suddenly, when we divide by fractions (less than 1) our quotient gets bigger !

$$
\begin{aligned}
& 5 \div \frac{1}{4}=\text { means how many qu } \\
& 5 \div \frac{1}{4}=20 \text { Draw if. }
\end{aligned}
$$

There are 20!

Trachoomy 5 wholes has four quarters so $5 \div \frac{1}{4}$ becomes $5 \times 4=20$
(1) Caution: When drawing this diagram be sure to say "I am drawing five wholes partitioned into fourths" or "separated into fourths". Do not say "divided into fourths" because that is confusing. Divided into is not the same as divided by. Because we are teaching division, our words for creating regions should be separated, partitioned, split, but not divided.
 Twenty quarters

multiplying
by the reciprocal
Do NOT
teach
"multiply by the reciprocal" until you show kids why.

5 whole

Again before teaching fraction dinssoi
upu could have Kids respond to th is
prompt. "When I divide a number by
another number, my number gets smaller-
True or False?" Because upuntel now, that'sbeen true. Good de bate!

Now students have learned that if we multiply by a fraction less than one, our answer gets smaller. This is the first time they have seen that. We can use observation of patterns to verify

$$
\begin{aligned}
& 8 \times 10=40 \\
& 8 \times 5=40 \\
& 8 \times 2=\frac{16}{8} \\
& 8 \times 1=\frac{8}{8} \text { When our factor }=1 \text {, our number doeon't } \\
& 8 \times \frac{1}{2}=\frac{4}{2} \quad \text { Change } \\
& 8 \times \frac{1}{4}=\frac{2}{6} \text { when our factor is less } \\
& 8 \times \frac{1}{10}=\frac{\frac{8}{10}}{6} \text { or } \frac{4}{5} \text { or } 0.8 \\
& 8 \times \frac{1}{100}=\frac{8}{100} \text { or } \frac{2}{25} \text { or } 0.08 \\
& \text { makes numbers bigger. } \\
& \text { than one, our number } \\
& \text { gets smaller } \\
& \text { (product is smaller than } \\
& \text { original factor). } \\
& \text { We want to encourage formal math language, like above, but in this } \\
& \text { case, we need a simple, clear expression of what is happening, so } \\
& \text { that kids can hold on to that reasoning and apply it to decimals. We } \\
& \begin{array}{l}
\text { can say "When I multiply by a tiny number I make my answer } \\
\text { smaller" }
\end{array} \\
& \text { smaller" }
\end{aligned}
$$

* IF we multiply a number by a Factor LESS TAANI our product is smaller than our original factor.
This becomes important as we mweltply decimals.

$$
\left.\begin{array}{l}
8 . \times 0.1=0.8 \\
8 . \times 0.01=0.08 \\
42 . \times 0.01=0.12 \\
4.0 .0 .1=4.3
\end{array}\right\} \begin{aligned}
& \text { Be surekids } \\
& \text { understand: } \\
& \text { "Do we agree } 0.8 \\
& i \text { s smaller than } 8 ? \\
& \text { "that } 4.3 \text { is } \\
& \text { smaller than } 43 ?
\end{aligned}
$$

ヘ when! multiply by a
is smacimal less than', ouranswer smaller \therefore decimal moves $\angle E F T$.

If we divide by a fraction less than one, our answer gets bigger. This is the first time they have seen that. We can use observation of patterns to verify

$$
\begin{aligned}
& 8: 8=1 \quad \text { Let kids fill in these blanks } \\
& 8 \div 4=2 \\
& 8 \div 2=4 \\
& 8 \div 1=8 \\
& 8 \div \frac{1}{2}=\frac{16}{32} \\
& 8 \div \frac{1}{4}=32 \\
& 8 \div \frac{1_{10}}{}=80 \\
& 8 \div \frac{1}{100}=800 \leqslant \text { This centre used to prove } \\
& \text { why we cant dieside by } 0 \text {, } \\
& \begin{array}{l}
\angle \text { This can le used to prove } \\
\text { why we cant dierde by, }
\end{array} \\
& \text { Plain language: "If I divide by a big number, } \\
& \begin{array}{l}
\text { my answer gets smaller, but if I divide by a tiny } \\
\text { number, my answer gets bigger". Do we agree }
\end{array} \\
& \text { using reasoning. } \\
& \text { step the Pattern: as the divisor } \\
& \text { yutreardo gets smaller the } \\
& \text { equalsquobiemejuotient gels larger. } \\
& \text { aron divisor is Less than one. } \\
& \text { our number sets Bier. } \\
& \text { conversation! }
\end{aligned}
$$

* This concept will become mpsatant as we begin to divide with decimals.

Multiplication of Decimals

1. Review everything kids have been taught about decimals. Decimals are another way to write fractions with denominators of 10,100, 1000 and so on. We think they know this, and they will say 4.15 as "Four and one tenth and 5 hundredths" or "four and 15 hundredths", but they might not necessarily be able to visualize it. Be sure to draw it!

As with fractions, it is important to let kids know our "whole" can change

partitioned into
hundredths
and fifteen hundredths are shaded

Tin this model, we can point out why" four and fiftee hundredths" is the same as "four and one tenth and five hundredths". Remind them to view a column of ten as one ten th of the whole, like a ten rod.

2. Be sure students can order decimals, and understand which are larger.
0.6 is larger than 0.06

Kids get confused about decimals like 2.289 and 2.5 and will sometimes call the first one larger, just because they see more numbers. Be sure to clear this up.

3. We begin multiplying decimals concretely.

Ex: 4×1.2

Students can clearly see this is 4.8

Here is where we teach to use reasoning to place the decimal in the answer. Students should understand that 4×1.2 is close to 4×1 so our answer is not 0.48 or 48 , but 4.8

Ex. 5×0.01 This is 5 groups of $\frac{1}{100}$

$5 \times 0.01=0.05$
Symbolically: When I multiply 5 by a tiny number, I make it smaller.
0.05 is smaller than 5 .
The decimal moved left

I say" decimal one" "
then I say fie" "decimal zero one"! se we fill the egg crate within zens. $\because 5$.

If we write the factors the other way around, 0.01×5, we can think of "one onehundredth of $5^{\prime \prime}$. Using similar models

There are 500 unit squares here in 5 wholes. If I take one one-hundredth of them, that is 5 unit squares

Again, 5 out of 100 or 0.05

Using area models to multiply two decimal numbers is less straight forward:
Ex: 0.8×0.5
You can find several variations on using area model representation for this, such as paper folding, or overlapping shading. I like to keep relating this to taking "part of something" like fraction multiplication. We are saying 8 tenths of 5 tenths.

Here's how we represent it.
Here are five tenths, or 0.5

Show "five tenths"

Now I have to take eight tenths of the shaded region. Eight tenths of 5 tenths, written 0.8×0.5

Counting the squares or Seeing the array of 5×8 I see there are to unit squares. $\frac{40}{100}=0.4$

Sense-making: 0.8 of something is a little less than the whole thing, so I expect 0.8 of 0.5 to be a lethe lersthan 0.5 , so 0.4 makes sense.

By this grade, Kids should recognize o us as If we reverse the factors, and ask 0.5×0.8, we are asking what is "half of 0.8 "? So it's "half". logical that it is 0.4

* student should 4 know from grades each there n sion
0.40 and 0.4 is ter
which is 40/100 or $4 / 10$ or 0.4
\uparrow
will you need to
prove to some students That there are
4 "tenths" in the select ted region?

Be sure they can explain" why"
if Kids are stugghng to vis value the "tenths"
because they're used to see ing "rods"
you could select your" half of 0.8 " the
other way solids clearly see four "rods".
 It's good to show both arrangements to make more connections and flexible reasoning.
Four "rods"
Now practice decimal multiplication, always taking time here and there to draw the models to reinforce the symbolic calculations.

Math Makes Sense texts also show a number line model.
Mental Math and Reasoning:
Ex: $2.5 \times 6=$
Using reasoning: 2.5×6 means we want 2 and a half "sixes". Well 2 sixes is 12 , and another half of six is $3,12+3=15$

Ex: $0.6 \times 15=$
0.6×15 means we want six tenths of 15 . One tenth of 15 is 1.5 , and we need six of those, so 6×1.5 is one and a half sixes. One six is six, and another half is three, so $6+3=$ 9. (**Notice when we multiplied 15 by a decimal smaller than one, we made is smaller. 9 is smaller than 15)

Another way:
0.6 is 0.5 plus 0.1 .

So we can take half a number, then a tenth of a number, and add them together $0.6 \times 15=$
Take 0.5 of 15 (half of 15) which is 7.5
Take 0.1 of 15 (one tenth of 15) which is 1.5
$7.5+1.5$ is 9
This is very handy for sales tax at 6% or .06 , and also converting miles to km . One $\mathrm{km}=$ 0.6 miles. So in the above example, $15 \mathrm{~km}=9$ miles.
2. Dividing decimals:

Ex: $\quad 4.8 \div 1.2=$
This is asking "how many "one point twos" are in four point 8?
Lets draw 4.8

You can see we can easily find four groups of 1.2

$4.8 \div 1.2=4$
symbolically: $4.8 \div 1.2 \quad 1,2 \sqrt{4.8}$

$$
\text { we adjust this to } \frac{12 \frac{04}{48}}{\frac{48}{\text { OR }}}
$$

As fractions: $4 \frac{8}{10} \div 1 \frac{2}{10}$
$\frac{48}{10} \div \frac{12}{10}$ (1 four denominators are the same, we can just din de the numerators $48 \div 12$ is 4$)$
or Proceeding with
The algorithm: $\rightarrow \frac{48}{10} \div \frac{12}{10}$

$$
\frac{448}{16} \times \frac{18}{12}=4
$$

Once or twice it's good to show kids all the ways of conceptualizing this, to make as many connections as possible.

2 with 0.81 eft over *hate this is Nor 2.80%
Do weremember what to do with a remainder? We put it over the dingo: $\frac{0.8}{1.4}=\frac{8}{19}=\frac{4}{7}$
so $2 / 7 /$, orwecan change this to a decimal.

Algorithm: $3.6 \div 1.4$
We can more the decimal

$$
\begin{array}{r}
02 \\
14 \sqrt{36} \\
\frac{28}{8}
\end{array}
$$

the same number of
spaces in the divisor
4 dividend.
why? because
$10 \div 2$ is same as $100 \div 20$
or $1000 \div 200$ etc.
Cnbie-if westop here, we put the remainder 18, over the drisor, 14 , so $2 \frac{8}{14}$ or $2 \frac{4}{7}$. But since the question is
guin in decimals, wereport counanswer ix decimals)

Using a number line model-lots of example in MMS
3. Moving the decimal point. Often students just want "rules" or "tricks" to remember. This is not teaching conceptually and provides no understanding, plus these "rules" will fail them. For instance, I've had students tell me "when we divide decimals, we move the decimal place left". This is only sometimes true!

Kids need to remember:
(I would put these statements on the board and have students agree on what goes in the blanks)

When I multiply by a number greater than 1(a big number), my answer gets \qquad
When I multiply by a number less than 1 (a tiny number), my answer gets \qquad
When I divide by a number greater than 1 (a big number), my answer gets \qquad
When I divide by a number smaller than 1 (a tiny number), my answer gets \qquad

This is not using "rules", it's using understanding and reasoning. All through the previous work, point these relationships out to kids so they can use this reasoning when it comes to multiplying and dividing by factors of 10

From MMS 7

Multiply. Describe any patterns you see.
a) 8.36×10
b) 8.36×0.1
8.36×100
8.36×0.01
8.36×1000
8.36×0.001
8.36×10000
8.36×0.0001

- Divide. Describe any patterns you see.
a) $124.5 \div 10$
b) $124.5 \div 0.1$
$124.5 \div 100$
$124.5 \div 0.01$
$124.5 \div 1000$
$124.5 \div 0.001$
$124.5 \div 10000$
$124.5 \div 0.0001$

I would put up mixed practice

$$
\begin{aligned}
& 6.2 \times 100= \\
& 45.98 \times 0.001= \\
& 452 \div 1000= \\
& 934.522 \div 0.01= \\
& \text { etc }
\end{aligned}
$$

